
NONLINEAR WARPING FUNCTION RECOVERY BY SCAN-LINE SEARCH USING
DYNAMIC PROGRAMMING

Fatih Porikli

Mitsubishi Electric Research Laboratories
Cambridge, MA 02139, USA

ABSTRACT

We present a novel solution to the warping recovery prob-
lem. Our algorithm has several distinct advantages; it is scal-
able, it enables effective integration of boundary and continuity
constraints, and most importantly it is computationally much less
demanding than the previous approaches. In addition, our algo-
rithm accurately detects non-linear warping functions without be-
ing restricted to the linearity assumptions and 2-D planar defor-
mations unlike the existing methods. We achieve to formulate the
image warping as an optimization process in 1-D scan-line search
spaces. We construct the search spaces from block-matching based
image distances, and then we traverse minimum cost paths into
these search spaces using boundary conditions to determine the
horizontal and vertical components of warping for each pixel. Our
experiments prove the performance of the proposed algorithm.

1. INTRODUCTION

Discovering the warping function between two images is very im-
portant for several applications. For instance, the next generation
projector systems require the automatic recovery of the display
surface. In such a scenario, a known pattern may be projected
onto an unknown surface and the image on the surfaces may be
compared to find the warping, which manifest the shape of the
surface. Another application is the recovery of optical distortion
in outdoors camera setups. The distortion due to the splattered rain
drops and disfigured protective glasses in front of the lenses can be
solved by finding the warping before and after the distortion.

Although there are previous attempts to address recovery of
warping, some methods are limited only for linear distortions [5].
Besides, existing warping recovery algorithms are computation-
ally very demanding [1].

Here, we propose an algorithm to find the nonlinear warping
between two images. Unlike the existing approaches, our algo-
rithm is not restricted to the linear warping scenarios. We achieve
effective integration of the continuity and boundary conditions.
Our algorithm is also scalable without requiring subsampled ver-
sions of the input images. Most importantly, our algorithm is com-
putationally much simpler than the two-dimensional dynamic pro-
gramming approach [4] since we take advantage of one-dimensional
scan line structure.

2. SCAN-LINE SEARCH

Scan-line is a 1-D line on the original image. Our objective is
to find its correspondence (which may be a curve) in the warped
image.

Let an input image and its warping be I(x, y) and Iw(x, y)
where x = 1, ..., M and y = 1, ..., N . We define a warping func-
tion w(x, y) that transfer the intensity values of the original image
to the warped image as

Iw(x, y) = I(x + wx(x, y), y + wy(x, y)) (1)

where wx and wy represent the horizontal and vertical components
of the pixel relocation, respectively. Thus, the warping function is
a two-dimensional, real valued mapping of the pixel coordinates.
The boundary conditions of the warping function are given as

wx(x, y) = 0 : x = 1, x = M

wy(x, y) = 0 : y = 1, y = N

wx(x, y) ≥ max(0, xmax) : x < M/2

wy(x, y) ≥ max(0, ymax) : y < N/2

wx(x, y) ≤ max(M − x, xmin) : x > M/2

wy(x, y) ≤ max(N − y, ymin) : y > N/2 (2)

where [xmin, xmax] and [ymin, ymax] are the range of horizontal
and vertical warping, so called as warping window. These condi-
tions ensure that the warped image coordinates are always within
the boundary of the original image.

Principally, the warping function should minimize the aggre-
gated error between the original and projected image for all pixels:

arg min

M∑

x

N∑

y

|I(x, y)− Iw(x− wx(x, y), y −wy(x, y))|

xmin ≤ wx ≤ xmax, ymin ≤ wy ≤ ymax (3)

It is apparent that the above 2-D minimization problem (even with
the continuity constraints) is computationally very demanding [4].

Instead of doing the minimization in the 2-D image plane, we
break it down into 1-D horizontal and vertical scan-line processes.
We define a scan as sy(x), x = 1, ..., M (or similarly sx(y), y =
1, ..., N) that corresponds to a row (or column) within the original
image.

For a pixel on a scan-line sy(x), we compute the distances of
all possible matches within the warped image within the warping
window. One major difference of our algorithm from the previous
approaches is that instead of depending only the point comparisons
we extend the distance measure to the absolute block differences,
i.e. to block-matching. The distance between the original image
and warped image blocks is defined as

d(I(x, y), Iw(x, y)) =

δ∑

m=−δ

−δ∑

n=−δ

|I(x + m,y + n)

−Iw(x + m, y + n)| (4)

Fig. 1. Scan-line search space is constructed from the combined
intensity distances of pixels within a search window centered on
them. For each scan-line, a search space is generated.

where δ is the block radius. By computing all the distances within
the warping window, we obtain a [xmax − xmin, ymax − ymin]
non-negative matrix for each pixel on the scan-line as illustrated
in Fig. 1. Then, a scan-line search space Sy(x, i, j) is constructed
by reindexing the distance matrices

Sy(x, i, j) = d(I(x, y), Iw(x + i, y + j)) (5)

where (xmin ≤ i ≤ xmax, ymin ≤ j ≤ ymax]. Note that, the
i = 0, j = 0 axis in this space corresponds to zero-warping, i.e.
no change in the pixel locations. The above boundary conditions
impose that Sy(1, 0, 0) = Sy(M, 0, 0) = 0. One distinct advan-
tage of using a search space is that the integration of continuity
and other constraints becomes significantly uncomplicated. We
also show that we can easily change the resolution of the warping
function.

Now the question becomes how to find the amount of reloca-
tion between the original and warped images. It is obvious that the
search space captures all the possible warpings of pixels along the
scan-line. It is apparent that if there is no continuity requirement,
the problem converts itself to an ordinary block-matching, which
finds the minimum at each distance matrix for every pixel.

The continuity constraint asserts that the ordering of the pixels
before and after the warping should be same. In other words, if a
pixel at x is mapped to x∗ then the consecutive pixel along the
scan-line at x + 1 can be mapped to pixels at the same (x) or
following pixels (> x∗) but not the x∗ − 1 or any pixel before it.
Otherwise, the ordering of pixels will reverse, and a crossover will
happen.

This implies that the warping at x+1 can only be greater than
−1 (on either vertical or horizontal directions), i.e. wx(x+1, y) ≥
wx(x, y) − 1 and wy(x + 1, y) ≥ wy(x, y) − 1 on the scan-line
direction within the search space.

We will use this property to find a nonlinear warping function
in the next section.

Fig. 2. A minimum cost path within the search space is obtained
by dynamic programming. Vertical and horizontal components of
the path give the corresponding warping amounts.

3. DETERMINATION OF MINIMUM COST PATH

After we construct the scan-line search space, we find a path that
connects the first (x = 0) and last (x = M) pixels such that
the total distance on the traversed path is the minimum among all
possible paths and the transition between the warping from one
pixel to next is bounded by the above property. Since our objec-
tive is to find a single minimum cost path traversing from (1, 0, 0)
to (M, 0, 0) within Sy by making controlled jumps, we adapt a
dynamic programming technique [3].

Dynamic programming is an approach developed to solve se-
quential, or multi-stage, decision problems [2]. Basically, what
dynamic programming approach does is that it solves a multi-
variable problem by solving a series of single variable problems.
The essence of dynamic programming is Richard Bellman’s Prin-
ciple of Optimality. This principle is intuitive: from any point on
an optimal trajectory, the remaining trajectory is optimal for the
corresponding problem initiated at that point.

Let v be a vertex and e be an edge between the vertices of a di-
rected weighted graph. We associate a cost to each edge c(e). We
want to find the minimum cost path by moving from an origin ver-
tex v1 to a destination vertex vM . The cost of a path p(v1, vM) =
{v1, .., vM} is the sum of its constituent edges

C(p(v1, vM)) =

M∑

x

c(vx) (6)

Suppose we know the costs C(v1, v∗) from v1 to every other ver-
tex. Let’s say v∗ is the last vertex the path goes through before
vM . Then, the overall path must be formed by concatenating a path
from v1 to v∗, i.e. p(v1, v∗), with the edge e(v∗, vM). Further, the
path p(v1, v∗) must itself be a minimum cost path since otherwise
concatenating the minimum cost path with edge e(v∗, vM) would
decrease the cost of the overall path. Notice that C(v1, v∗) must
be equal or less than C(v1, vS), since C(v1, vM) = C(v1, v∗) +
c(v∗, vM) and we are assuming all edges have non-negative costs,
i.e. c(v∗, vM) ≥ 0. Therefore if we only know the correct value
of C(v1, v∗) we can find a minimum cost path.

We modified Dijkstra’s algorithm for this purpose. Let Q be
the set of active vertices whose minimum cost paths from v1 have
already been determined, and ~p(v) is a back pointer vector that
shows the neighboring minimum cost vertex of v. Then the itera-
tive procedure is given as

1. Set u1 = v1 Q = {u1}, C(u1) = 0, ~p(v1) = v1, and
c(v) =∞ for v 6= u1.

1
2

3
4

5
6

7
8

1

2

3

4

5

6
6

6.5

7

7.5

8

8.5

Match window radius (δ)

Warping vs. matching window

Warping window radius

si
m

ila
rit

y

Fig. 3. Size of the matching block is optimum for δ = 4 for most
cases. Note that, smaller matching blocks and warping windows
increase error.

2. Find ui that has the minimum cost c(ui).

3. For each ui ∈ Q: if v is a connected to ui, assign c(v) ←
min{c(ui), C(ui)+c(v)}. If c(v) is changed, assign ~p(v) =
ui and update Q← Q ∪ v.

4. Remove ui from Q. If Q 6= ∅ go to step 2.

Then the minimum cost path p(v1, vM) = {v1, ..., vM} is ob-
tained by tracing back pointers by starting from the destination
vertex vM as vM−1 = ~p(vM). The algorithm takes time O(M2).

We converted the search space to directed weighted graph as
follows. Each point (x, i, j) in Sy corresponds to a vertex, vx,i,j =
(x, i, j). The edges, connects a point (x, i, j) to other points in the
next distance matrix. Due to the continuity constraint, the direc-
tional edges are only limited to the vertices in 8th-neighborhood.
Thus, 9 possible edges, including the zero-warp case, connects
vx,i,j to vx+1,i,j , vx+1,i+1,j , vx+1,i−1,j , vx+1,i,j+1, vx+1,i,j−1,
vx+1,i−1,j+1, vx+1,i+1,j−1, vx+1,i−1,j−1, vx+1,i+1,j+1.

The minimum cost path gives the 2-D warping of a 1-D line
in the original image. To find the correspondences of the other
lines in the original image, we process the consecutive scan-lines
accordingly. Fig. 2 depicts the relation between the space and path.
Thus, after we scan all the horizontal lines, we obtain a warping
function. We repeat this previous process for the vertical scan-
lines and assign the pixel-wise mean of both functions as the final
result. In summary, the recovery of warping function consists of
these stages:

1. Construct scan-line search space for y, start from S(1, 0, 0)

2. For (x, i, j), compute costs in from the for 8th neighbor-
hood of (x + 1, i, j)

3. When accumulation reaches (M, 0, 0), start back-tracing to
determine minimum cost path (warping function is equal to
path coordinates)

4. Increase y, repeat from 1

5. Switch the scanning direction from horizontal to vertical
(Sy to Sx), repeat above.

Another advantage of the proposed method is that it is pos-
sible to scale the resolution of the warping. Unlike the existing
approaches, our method does not require to compute the warping

at the finest image resolution without subsampling the data, which
deteriorates block distances and causes aliasing.

At a lower (K = M/k, L = N/l) resolution, the edges con-
nect (x, i, j) to (x + k, i, j)’s, the warp window stays same, and
the consecutive scan-line becomes y = y + l.

4. EXPERIMENTS AND CONCLUSIONS

We tested the proposed algorithm using synthetic and real images.
Fig. 4 - Fig. 7 show various image pairs, extracted warping func-
tions, and recovered images. We manually deformed the original
images to generate the warped images. The effect of the block
size δ is given in Fig. 3. We compared the similarity of the origi-
nal image and the reconstructed image from warped version using
the extracted warping function for different matching block and
warping windows sizes. As visible, the accuracy increases if the
warping window size becomes as large as the maximum warping
amount, and matching block size around δ = 4.

We compared the computational complexity of our method
with the state-of-art methods. In [4], it is shown that their 2-D
dynamic programming implementation has O(M39M) time com-
plexity. Levin’s hidden Markov model based method [1] requires
even more operations by expanding to an exponential complexity
O(M4M).

On the other hand, our algorithm is remarkably lower time
complexity O(9(xmax − xmin)(ymax − ymin)(2δ + 1))2M2 ∼
O(κM2). This is due to using M scan-lines, 9M(xmax − xmin)
(ymax − ymin) transitions in dynamic programming phase, and
(2δ +1))2 operations for block matching to construct the distance
matrices. For instance, in case of a 5×5 matching window, 11×
11 warping window, and M = N = 256 image, our algorithm
needs only 1.78 × 109 operations, whereas the prementioned 2-D
approach demands an exceedingly large number of operations; 3×
10251 (Using semi-optimal beam-search technique, the number of
operations for the 2-D approach decreases to 1.82×1010 , however
it has stillO(M3) time complexity).

In summary, we propose a novel, accurate, warping function
recovery method that is scalable and proven to be computationally
much simpler than the existing methods.

5. ACKNOWLEDGEMENTS

We sincerely thank Dr. Kadir Peker for his valuable comments.

6. REFERENCES

[1] E. Levin and R. Pieraccini, “Dynamic planar warping for opit-
cal character recognition”, Proceedings of ICASSP, 149-152,
1992.

[2] R. Keeney and H. Raiffa, “Decisions with multiple objec-
tives”, Wiley Press, 1976.

[3] F. Porikli. “Sensitivity characteristics of cross-correlation dis-
tance metric and model function”, Proceedings of 37th CISS,
2003.

[4] S. Uchida and H. Sakoe. “A monotonic and continuous two-
dimensional warping based on dynamic programming”, Pro-
ceedings of 14th ICPR, 1, 521-524, 1998.

[5] S. Uchida and H. Sakoe. “Piecewise Linear Two-Dimensional
Warping”, Proceedings of the 15th ICPR, 3, 538-541, 2000.

(a) (b)
2

4

6

8

10

12

14

16
2 4 6 8 10 12 14 16

(c) (d)

Fig. 4. Checker pattern: (a) original, (b) warped image, (c) warp
function, (d) reconstructed image.

(a) (b)
2

4

6

8

10

12

14

16
2 4 6 8 10 12 14 16

(c) (d)

Fig. 5. Lena: (a) original, (b) warped image, (c) warp function, (d)
reconstructed image.

(a) (b)
2

4

6

8

10

12

14

16
2 4 6 8 10 12 14 16

(c) (d)

Fig. 6. Ugur (a) Original, (b) warped image, (c) warp function, (d)
reconstructed image.

(a) (b)
2

4

6

8

10

12

14

16
2 4 6 8 10 12 14 16

(c) (d)

Fig. 7. (a) Original, (b) warped image, (c) warp function, (d) re-
constructed image.

